The Diagnosis of Rheumatic Fever
Laura Mirkinson

Pediatrics in Review 1998;19;310
DOI: 10.1542/pir.19-9-310

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pedsinreview.aappublications.org/content/19/9/310
In early childhood, the most likely cause of status epilepticus is:
A. Chromosomal disease with central nervous system abnormalities.
B. Drug overdose.
C. Febrile seizure lasting longer than 30 minutes.
D. Metabolic disease with lactic acidosis.
E. Unsuspected head trauma.

The recommended initial pharmacologic approach to the treatment of status epilepticus is:
A. Lorazepam 0.05 to 0.1 mg/kg intravenously.
B. Nitrous oxide by inhalation.
C. Pentobarbital 3 to 5 mg/kg intravenously.
D. Phenytoin 15 to 20 mg/kg intravenously.
E. Sodium valproate syrup 20 mg/kg in water rectally.

The classic migratory polyarthritis of ARF often involves the extremities (elbows, wrists, knees, and ankles) and is extremely painful. It usually presents early in the disease and is short-lived (<4 weeks). It is exquisitely responsive to standard anti-inflammatory therapy. Symptoms of chorea present late (unlike arthritis or carditis), usually months after the initial pharyngitis. The process is self-limiting and reversible.

The Jones Criteria for the diagnosis of ARF, published originally in 1944, have been updated several times, most recently in 1992. The 1992 update differs from prior versions in its strong focus on identifying acute episodes of rheumatic fever. Whereas previously two major or one major and two minor criteria were required to fulfill the diagnostic profile, evidence of a preceding streptococcal infection (such as an elevated antistreptolysin O [ASO] titer) in addition to two major or one major and two minor manifestations now are needed for diagnosis (Table). It is important to note that the Jones Criteria are not all-inclusive. For example, carditis or especially chorea can be the sole presenting symptom.

The overall incidence of streptococcal pharyngitis has remained essentially unchanged during this century. The underlying reasons for the decrease in ARF during this time has been attributed to the possibility that some M types are more “rheumatogenic” than others. Rheumatogenicity may be due to the presence of an M-associated protein I surface antigen and the absence of a serum opacity reaction (SOR) in these
The concept of rheumatogenicity is particularly attractive because other explanations, including improved hygiene, standards of living, and the availability of antimicrobial treatment, cannot account for the previous decline in disease. Group A streptococcal serotypes are known to increase and decrease in different geographic locations. A resurgence of ARF could be attributed to the introduction of a rheumatogenic strain in a particular geographic area. Host susceptibility, including predisposing genetic factors, also may influence the likelihood of developing ARF after a streptococcal pharyngeal infection.

The diagnosis of ARF is based on the finding of recent streptococcal infection and clinical findings consistent with the major and minor criteria. Laboratory evaluation of ARF must focus primarily on the identification of antecedent group A streptococcal infection. A positive throat culture or rapid antigen test confirms a recent infection. Rapid antigen tests are used very frequently as screening tests for group A streptococcal infection, but throat culture remains the definitive test to establish the diagnosis. Using two or three enzyme tests improves the recognition of infection.

Recommendations for the primary prevention of rheumatic fever (treatment of streptococcal pharyngitis) still include intramuscular penicillin G and oral penicillin V or erythromycin estolate/ethylsuccinate. Other alternatives include azithromycin and the oral cephalosporins (see Pichichero in this issue of Pediatrics in Review). It is essential to employ continuous antibiotic prophylaxis to prevent recurrences of rheumatic fever due to subsequent streptococcal infection. Benzathine penicillin G 1.2 million units intramuscularly remains the treatment of choice for prophylaxis and is administered every 3 or 4 weeks. Alternative regimens for prophylaxis include daily penicillin V, sulfadiazine, or erythromycin. There is recent evidence that for patients at particularly high risk, such as those living in endemic areas or those who have chronic rheumatic heart disease, an every 3-week regimen of intramuscular penicillin prophylaxis is more protective. This prophylactic regimen does not substitute for the standard bacterial endocarditis prophylaxis required for patients who have rheumatic heart disease. The duration of prophylaxis for patients who do not have carditis is 5 years or until age 21 (whichever is longer). For patients who have carditis but no residual heart disease, prophylaxis is continued for 10 years or well into adulthood (whichever is longer). Those patients who have residual heart disease from carditis are treated at least until age 40 or may receive lifelong prophylaxis.

Laura Mirkinson, MD
Department of General Pediatrics
Children's National Medical Center
Washington, DC

TABLE. The 1992 Jones Criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence of a preceding group A streptococcal infection:</td>
<td>Elevated or rising ASO titer or Positive throat culture or Positive rapid antigen test.</td>
</tr>
<tr>
<td>Plus</td>
<td></td>
</tr>
<tr>
<td>Either two major or one major and two minor manifestations:</td>
<td></td>
</tr>
<tr>
<td>Major manifestations:</td>
<td>Carditis, polyarthritides, Sydenham chorea, erythema marginatum, subcutaneous nodules.</td>
</tr>
<tr>
<td>Minor manifestations:</td>
<td>Arthralgia, fever, elevated acute-phase reactants (ESR, C-reactive protein), prolonged PR interval.</td>
</tr>
</tbody>
</table>